Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Kyoung-Tae Park 5 Articles
Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process
Bin Lee, Dae-Kyeom Kim, Young Il Kim, Do Hoon Kim, Yong Son, Kyoung-Tae Park, Taek-Soo Kim
J Powder Mater. 2020;27(6):509-519.   Published online December 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.6.509
  • 26 View
  • 0 Download
  • 3 Citations
AbstractAbstract PDF

A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Citations

Citations to this article as recorded by  
  • Rheological Characteristic Analysis Methods and Tests of Metal Powders for PBF Additive Manufacturing
    Wan-Sik Woo, Ho-Jin Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(10): 1.     CrossRef
  • Residual Stress Analysis of Additive Manufactured A356.2 Aluminum Alloys using X-Ray Diffraction Methods
    SangCheol Park, InYeong Kim, Young Il Kim, Dae-Kyeom Kim, Soong Ju Oh, Kee-Ahn Lee, Bin Lee
    Korean Journal of Metals and Materials.2023; 61(7): 534.     CrossRef
  • Enhancing spreadability of hydrogenation-dehydrogenation titanium powder and novel method to characterize powder spreadability for powder bed fusion additive manufacturing
    Young Il Kim, Dae-Kyeom Kim, InYeong Kim, Sang Cheol Park, Dongju Lee, Bin Lee
    Materials & Design.2022; 223: 111247.     CrossRef
Study on the Preparation of TiO2 3D Nanostructure for Photocatalyst by Wet Chemical Process
Duk-Hee Lee, Jae-Ryang Park, Chan-Gi Lee, Kyoung-Tae Park, Kyung-Soo Park
J Powder Mater. 2020;27(5):381-387.   Published online October 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.5.381
  • 37 View
  • 0 Download
AbstractAbstract PDF

In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 m2g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite
Won Ju, Young Do Kim, Jae Jin Sim, Sang-Hoon Choi, Soong Keun Hyun, Kyoung Mook Lim, Kyoung-Tae Park
J Powder Mater. 2017;24(5):377-383.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.377
  • 29 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of 900°C for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Citations

Citations to this article as recorded by  
  • Formation mechanism, microstructural features and dry-sliding behaviour of “Bronze/WC carbide” composite synthesised by atmospheric pulsed-plasma deposition
    V.G. Efremenko, Yu.G. Chabak, V.I. Fedun, K. Shimizu, T.V. Pastukhova, I. Petryshynets, A.M. Zusin, E.V. Kudinova, B.V. Efremenko
    Vacuum.2021; 185: 110031.     CrossRef
Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates
Da-Woon Jeong, Song-Yi Kim, Kyoung-Tae Park, Seok-Jun Seo, Taek Soo Kim, Bum Sung Kim
J Powder Mater. 2015;22(2):134-137.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.134
  • 32 View
  • 0 Download
AbstractAbstract PDF

The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and 50 μm are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to 150°C in all diamond size conditions. When the diamond particle size is increased from 15 μm to 50 μm (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

Supply and Demand Strategy of Rare Metal in Korea − Focusing on the Stocking pile −
Taek-Soo Kim, Bum-Sung Kim, Min-Ha Lee, Kyoung-Tae Park
J Powder Mater. 2014;21(4):313-317.   Published online August 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.4.313
  • 25 View
  • 0 Download
PDF

Journal of Powder Materials : Journal of Powder Materials